Reg. No.:	
- 0	

Multi-Disciplinary course

MATHEMATICS

UK2MDCMAT102 - Basic Operations Research

Academic Level: 100-199

Time: 1 Hour 30 Minutes(90 Mins.)

Max. Marks: 42

Part A. 6 Marks.Time:6 Minutes.(Cognitive Level:Remember(RE)/Understand(UN)) Objective Type. 1 Mark Each.Answer all questions

Qn No.	UHIASTIAN	CL	CO
1	Name any one method used to find initial feasible solution for transportation problem.	RE	2
2	Define a feasible solution of an LPP.	RE	2
3	Hungarian Method was discovered by	UN	3
4	Expand LPP	UN	2
5	Give an example of an unbalanced Transportation Problem.	UN	3
6	The solution to a transportation problem with m rows (supplies) and n columns(destinations) is feasible if number of positive allocations are	UN	3

Part B.8 Marks.Time:24 Minutes.(Cognitive Level:Understand(UN)/Apply(AP))Short Answer. 2 marks each.Answer all questions

Qn No.	Question							
	Show the feasible region of the following LPP. Max $Z=2x_1+3x_2$ Subject to $\ x_1+x_2\leq 1,$ $3x_1+x_2\leq 4\ x_1\geq 0,\ x_2\geq 0.$	UN	2					
8	Distinguish between transportation and assignment problems.							
9	Solve the following assignment problem. A B C D 1 120 100 80 90 2 80 90 110 70 3 110 140 120 100 4 90 90 80 90	AP	4					
10	Construct general mathematical model of LPP	AP	2					

Part C. 28 Marks.Time:60 Minutes (Cognitive Level:Apply(AP)/Analyse(AN)/Evaluate(EV)/Create(CR)) Long Answer.7 marks each.Answer all 4 Questions choosing among options * within each question

Qn No.		CL	CO
11	A)	AP	2, 2

Qn No.					Questi	on		CL	СО
	11.A)Solve the following LP graphically A. Min $Z=-x_1+2x_2$ Subject to the constrain $x_1+3x_2\leq 10,\ x_1+x_2\leq 6,\ x_1-x_2\leq 2,\ x_1\geq 0,\ x_2\geq 0.$								
	machine 2, ar requires 1hr o machine 2 an	nd machin of machir d 1hr of 1	ne 3. The a ne 2 and 1h machine 3	evailable on the contract of mach and the profession.	capacities iine 3. Pro it contribu	are 50, 25 oduct B req ution of pro	es are the capacities machine 1, and 15hrs respectively. Product A quires 2hrs of machine 1, 2hrs of oducts A and B are Rs5 and Rs4 PP graphically.		
	A)								
12	Briefly explain the methodology of operation Research? Also, write a short note on the applications of operation research. OR B)							AN	1, 3
	Explain with	an exam _l	ple for solv	ving a tran	ısportatio	n problem	using North West Corner Rule		
	A) Briefly expla Illustrate.	in an Ass	ignment P	roblem. D	iscuss on	e method f	or solving an assignment problem.		
	OR B)	. 11	6 11	1.2	.1 6 11				[
	Obtain an ini	tial basic	feasible so	olution to	the follow	ving transp	portation problem:		ı
13		D1	D2	D3	D4	Supply		EV	3, 3
	01	11	13	17	14	250			í
	02	16	18	14	10	300			ı
	O3 Demand	21 200	24	275	10 250	400			ı
	Demand	200	223	2/3	230				
14	A)							CR	2, 2
	·	or of fur	nituro mal	ac two pr	oducte ch	aire and tak	alas Processing of these products is		, -
	A manufacturer of furniture makes two products-chairs and tables. Processing of these products i done on two machines A and B.A chair requires 3 hours on machine A and 6 hours on machine B.A table requires 5 hours on machine A and 3 hours on machine B.Machine A is available 16								[

	CO
urs and whereas machine B is available for 30 hours during a week. A chair contributes Rs.2 wards profit and a table Rs.10.Formulate the problem as an LPP.	
ad the optimal solution to the following LPP $$ Max $Z=30x+20y$ Subject to the conditions $+y\leq 1500;\ x+y\leq 3000;\ x,y\geq 0.$	
ıd	